Table 4. Thermodynamic properties of the Fm3m \rightarrow Pm3m transition in the potassium and rubidium halides at the Fm3m \rightleftharpoons liquid \rightleftharpoons Pm3m triple point

Salt	Clark[22]		Pistorius[23]		This work						
	P (kb)	T (°C)	P (kb)	T (°C)	P (kb)	T (°C)	$-\Delta V_{\rm tr}$ (cm ³ /mole)	$\Delta S_{\rm tr}$ (cal/mole/deg).	$T_{\Delta}S$ (cal/mole)	P (cal/mole)	ΔE (cal/mole
KF	none observed										
KCI	18.95 ± 0.1	1042 ± 5	18.7 ± 0.7	1050 ± 10	19.5 ± 0.3	1070 ± 10	3.24 ± 0.21	+0.001	17	-1520	-1540
KBr			16.8 ± 1.0	997 ± 10	16.8 ± 0.6	1005 ± 10	3.32 ± 0.18	+0.09	120	-1340	-1460
KI			16.9 ± 1.5	934 ± 15	$15 \cdot 3 \pm 0 \cdot 4$	940 ± 15	$3 \cdot 31 \pm 0 \cdot 19$	+0.25	308	-1210	-1520
RbF			32	1055	38.5 ± 0.8	1105 ± 15	1.39 ± 0.55	-0.12	-170	-1280	-1110
RbC1	7.80	852	7.80 ± 0.01	852 ± 5	$8 \cdot 1 \pm 0 \cdot 3$	870±5	4.45 ± 0.18	-0.30	-344	-860	-520
RbBr			6.1 ± 0.8	808 ± 10	6.0 ± 0.2	830 ± 10	6.15 ± 0.23	-0.20	-222	-880	-660
RbI			5.0 ± 0.8	760 ± 10	4.7 ± 0.2	763 ± 10	6.69 ± 0.16	-0.22	-233	-750	-520

volume change. Since we find no polymorphic change at high temperatures where the transition kinetics would be more favorable, and the fact that Pistorius[23] found no break in the melting curve suggests that KF has no solid-solid transition at pressures below 45 kb.

The Fm3m \rightleftharpoons Pm3m transition pressures found for the salts KCl, KBr and Kl are compared in Table 2 with the transition pressures reported in the literature. Bridgman has examined this transition in these salts on three separate occasions [3, 24, 25]; however, only the latest of Bridgman's data [25] are given. In general our results for $P_{\rm tr}$ are in good agreement with the published data (Table 2). Average values of $P_{\rm tr}$ were in each case calculated from the data tabulated in Table 2.

Bridgman[3] and Pistorius[11, 12] have examined the effect of temperature on the transition pressure in these salts over the temperature range 25°-200°C. Bridgman[3] gives +3.45, -4.54 and +3.33 bar/deg respectively for the temperature dependence of the transition pressure in KCl, KBr and Kl. Pistorius [11, 12], on the other hand, gives -0.25, +0.55and -1.88 bar/deg for these same salts. These data are compared with the constant b from Table 1, i.e. the value of dP/dT found in this work. The data from these three sources all indicate that the variation of P_{tr} with temperature is small. It is seen that the values of dP/dT found by Bridgman and Pistorius all disagree in sign. The sign of dP/dT however determines the sign of the entropy change, $\Delta S_{\rm tr}$ (Fm3m \rightarrow Pm3m) for this transition in these salts since $\Delta V_{\rm tr}$ (Fm3m \rightarrow Pm3m) is negative in all cases.

The agreement between $\Delta V_{\rm tr}$ for KCl, KBr and KI found here and with published data (Table 3) is also relatively good, with the exception of the $\Delta V_{\rm tr}$ data given by Weir and Piermarini [5]. Weir et al. obtained their transition volume data from high pressure X-ray diffraction studies. Their data, however, are also in disagreement with the $\Delta V_{\rm tr}$ data given by Jamieson [7] and by Nagasaki et al. [9] for KI and KCl respectively. (The latter data for

KI and KCl were also determined from X-ray diffraction studies carried out at high pressures.) These $\Delta V_{\rm tr}$ data of Weir *et al.*[5] were not used in the calculation of the average value of $\Delta V_{\rm tr}$ for the salts KCl, KBr and KI.

Rubidium halides

Piermarini and Weir[4] report a solidsolid phase transaction in RbF at a pressure between 9 and 15 kb. They give the volume change for this transition as -20 per cent. Knof and Maisch[26] have observed changes in the optical transmission properties of RbF at a pressure of 33 kb, which is similar to the optical effect associated with the Fm3m → Pm3m transition in the potassium halides, KCl and KBr. Pistorius and Snyman[13], on the other hand, report phase transitions in RbF at a pressure of 6.1 kb at a temperature of 20°, and 5.0 kb at 200°C. The latter authors[13] noted that this phase transition in RbF was very sluggish. No indication of the size of ΔV for this transition was given by Pistorius et al. [13].

The results from our dilatometric measurements clearly indicate a polymorphic transition in RbF at about 35 kb, in agreement with the results reported by Knof et al. [26]. Transition pressure data for RbF are shown in Fig. 2. The transition was very sluggish at 100° and no transition was observed at room temperatures. However, at temperatures above 300°C the transition proceeds as readily as was found in the other alkali halides at 200°C. In the case of RbF, data taken only above 300°C were used in the least squares treatment of $P_{\rm tr}$ and $\Delta V_{\rm tr}$ vs. temperature. It was also necessary to modify the experimental arrangement since at temperatures above 400°C RbF reacts with the graphite heater causing it to become relatively non-conducting. Pistorius[23] found Ni to be a satisfactory container for RbF at high temperatures. We therefore isolated our sample from the graphite heater with a thin (0.0025 cm) nickel sleeve. With this modification our measurements were still limited to temperatures below about